1-3 Appendix B

For k=k(ω,X)=ksinψ and k=k(ω,X)=kcosψ, the Jacobian is given by

(B1)|J(k,kω,X)|=|kωkXkωkX|

Using the standard rules for manipulating derivatives (e.x., Chain rule) gives

(B2)kω|X=sinψkω|X

and

(B3)kω|X=cosψkω|X+k(cosψ)X|ω(B4)=cosψkω|Xksinψcos2ψ

Similarly,

(B5)kX|ω=sinψkX|ω+kcos3ψ(B6)kX|ω=cosψkX|ω

Combining these results gives the Jacobian as

(B7)|J(k,kω,X)|=kcos2ψkω|X

The derivative term, kω, in the above equation can be found by differentiating the dispersion relation D(k,ω,X)=0 to give

(B8)dDdω=Dω+Dkkω=0

so

(B9)|J(k,kω,X)|=kcos2ψDω(Dk)1

Thus in 1-3 Appendix A, one find

N(ω)=12π2XminXmaxg(X)|J(k,kω,X)|kdX(add)=12π2XminXmaxg(X)k2(1+X2)32Dω[Dk]1XdX